Sources of magnetic sensory input to identified neurons active during crawling in the marine mollusc Tritonia diomedea.
نویسندگان
چکیده
Although the nudibranch mollusc Tritonia diomedea orients to the geomagnetic field, the anatomical site and the mechanism of the geomagnetic transducer are not known. Previous work on semi-intact preparations of Tritonia diomedea in which the brain is intact and nerve connections to the periphery are maintained showed that identifiable pedal ganglion neurons Pd5 fired an increased number of action potentials when the horizontal component of the ambient magnetic field was rotated. This response disappeared when all nerves emerging from the brain were cut, suggesting a peripheral locus for the geomagnetic transducer. In the present work, we recorded intracellularly from Pd5 in preparations in which all peripheral nerves were cut except those containing the axons of neurons Pd5 (pedal nerves 2 and 3). These uncut, mixed, sensory-motor trunks innervate the locomotory epithelium of the foot upon which the animal crawls. In this further-reduced preparation, Pd5 again responded to magnetic field rotations with action potentials. To determine the direction of this action potential transmission in response to magnetic field rotations, we analyzed extracellular recordings from nerves containing the Pd5 axons and found that action potentials elicited in Pd5 by magnetic stimuli originate centrally and are transmitted peripherally. In addition, we have explored the behavioral function of Pd5 neurons by simultaneously recording intracellular electrical activity and crawling rate of the semi-intact animal. A significant correlation was found between crawling rate and Pd5 action potential rate. We also found that action potentials in dorsal swim interneurons depolarized both Pd5 and the established locomotion motoneuron Pd21.
منابع مشابه
Identification of magnetically responsive neurons in the marine mollusc Tritonia diomedea.
Behavioral experiments have demonstrated that the marine mollusc Tritonia diomedea can use the Earth's magnetic field as an orientation cue. Little is known, however, about the neural mechanisms that underlie magnetic orientation behavior in this or any other animal. In previous studies, two neurons in the brain of Tritonia, known as LPd5 and RPd5, were shown to respond with enhanced electrical...
متن کاملIdentifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea.
Diverse animals use the Earth's magnetic field as an orientation cue, but little is known about the sensory, processing and motor elements of the neural circuitry underlying magnetic orientation behavior. The marine mollusc Tritonia diomedea has both a magnetic compass sense and a simple nervous system accessible to electrophysiological analysis. Previous studies have revealed that four identif...
متن کاملOne rhinophore probably provides sufficient sensory input for odour-based navigation by the nudibranch mollusc Tritonia diomedea.
Tritonia diomedea (synonymous with Tritonia tetraquetra) navigates in turbulent odour plumes, crawling upstream towards prey and downstream to avoid predators. This is probably accomplished by odour-gated rheotaxis, but other possibilities have not been excluded. Our goal was to test whether T. diomedea uses odour-gated rheotaxis and to simultaneously determine which of the cephalic sensory org...
متن کاملHighly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea.
Several motor networks have now been found to be multifunctional, in which one group of neurons participates in the generation of multiple behavioral motor programs. Not surprisingly, the behaviors involved are frequently closely related, often using the same or similar muscle groups. Here we describe an interneuronal network in the marine mollusk Tritonia diomedea that is involved in producing...
متن کاملMagnetic Orientation and Navigation in Marine Turtles, Lobsters, and Molluscs: Concepts and Conundrums1
SYNOPSIS. The Earth’s magnetic field provides a pervasive source of directional information used by phylogenetically diverse marine animals. Behavioral experiments with sea turtles, spiny lobsters, and sea slugs have revealed that all have a magnetic compass sense, despite vast differences in the environment each inhabits and the spatial scale over which each moves. For two of these animals, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 202 Pt 21 شماره
صفحات -
تاریخ انتشار 1999